「全ての三角形は二等辺三角形?」解説

これは全ての三角形は二等辺三角形?に対する解説です。

実際の状況 以下、「AB > AC」とする(AB < AC の場合も同様である)

「証明」における論理のウソは、至って単純なものである。
三角形の合同条件の適用の辺りが如何にもウソ臭そうであるが、そうではない。
そもそもの状況設定が誤りなのだ。

きれいに図を書くと、右の図5のようになる。
「証明」では点Rが△ABCの内側にあるかのように扱っていたが、これは実際には△ABCの外側にある。
そのため AC = AR + RC ではなく AC = AR - RC であるので、「証明」は誤り。

ただこれだけのことなのであるが、一度考え込んでしまうとなかなか抜け出せない。

点Rが△ABCの外側にあることの解説

直線AOと辺BCの交点をSとすると、角の二等分線の性質より BS : CS = AB : AC である。
よって BS > CS であり、点B, P, S, C はこの順に並ぶ。《図5》
そのためには、点Oは△ABCの外側になければならない。

点C'
直線AOに関して点Cと対称な点をC'とすると、これは辺AB上にある。 《図6》
ここで、
 • OB = OC
 • OC = OC'
であるから OB = OC' である。

△OBC'と点Q
よって △OBC' は OB = OC' の二等辺三角形である。
従って、点Qはその頂角Oから底辺BC'に下ろした垂線の足であるから、線分BC'の中点となる。 《図7》

△OBP≡△OCP
ここで、直線AOに関して点Qと対称な点が点Rである。
従って、《図8》の通り点Rは△ABCの外側にある。  ■

執筆: 2008年2月29日, 最終更新: 2014年3月8日(中学幾何の範囲で書き直し)
「エセー」トップに戻る
鵺帝国トップに戻る